Abstract

In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis r = 0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.