Abstract

The implementation of sustainable industrial development based on energy/cost-effective techniques with zero/low rate of pollutant emission is an ideal strategy for the proper management of a natural environment. Gaseous ammonia released from a variety of anthropogenic sources (e.g., agriculture, pharmaceuticals, commercial cleaning products, and refrigerant) is estimated to be as high as 150 million tons∙year−1. To reduce the negative effects of atmospheric ammonia, the great utility of advanced functional nanomaterials (e.g., metal organic frameworks, covalent organic polymers, metal/metal oxide nanoparticles, and carbon nanostructures) has been recognized. To gain a better understanding of the sorptive removal potential of diverse materials, their performance has been evaluated based on the key performance merits (e.g., initial concentration, sorption capacity, and partition coefficient). Generally, the PC values can be applied to significantly estimate the contaminant adsorption potential of NMs via balancing the biased influences of operating parameters (e.g., initial concentration of pollutants) as perceived for the partitioning of compounds between aqueous phases at equilibrium (e.g., Henry's Law). Therefore, in this work, we have proposed the PC as a prosperous performance merit (in terms of heterogeneity of surface and strength of adsorption process) for the selection of high performance nano-adsorbents for gaseous ammonia. Moreover, the water stability, recyclability, economic aspects, and future perspectives have also been discussed for real-world applications of advanced nanomaterial against gaseous ammonia adsorption. The outcome of this evaluation will be expedient for the classification/selection of the most effectual and cost-effective options for mitigation of environmental pollutants like gaseous ammonia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.