Abstract
AbstractSmall-scale summer rainfall variability in a semiarid zone was studied by deploying five vertically pointing Micro Rain Radars (MRRs) along a nearly straight line and by using 12 rain gauges in the study area of the Xilin River catchment in China. The spatial scales of 4 and 9 km correspond to the resolution of precipitation radar and rainfall products from satellites. The dataset of the MRRs and rain gauges covers two months in the summer of 2009. Three parameters, that is, spatial correlation, intermittency, and the coefficient of variation (CV), were used to describe the rainfall variability as based on the data from the MRRs and rain gauges. The probability of partial beamfilling in a 4-km (9 km) pixel over a 30-min temporal scale was 17%–20% (28%–37%). More accurate equipment can measure lower rainfall intermittency. For scales of 4 and 9 km, the median CV of the accumulation times that were longer than 3 h with rainfall > 1 mm was 0.17–0.42. The accuracy of areal rainfall measured by different quantities of equipment was also evaluated. One MRR was sufficient for measuring the daily areal rainfall at a 4-km scale, with a fraction of prediction within a factor of 2 of observations of 1.0 and a correlation coefficient of ≥0.58 when daily mean rainfall was >1 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.