Abstract
Summary A new rain gauge network was installed in the Great Smoky Mountains National Park (GSMNP) in the Southern Appalachians since 2007 to investigate the space–time distribution of precipitation in the inner mountain region. Exploratory Intense Observing Periods (IOPs) have been conducted in the summer and fall seasons to devise optimal long-term monitoring strategies, and Micro Rain Radars (MRR) were deployed twice in July/August and October/November 2008 at a mountain ridge location and a nearby valley. Rain gauge and MRR observations were analyzed to characterize seasonal (summer/fall) and orographic (valley/ridge) precipitation features. The data show that summer precipitation is characterized by large event-to-event variability including both stratiform and convective properties. During fall, stratiform precipitation dominates and rainfall is two times more frequent at the ridge than in the valley, corresponding to a 100% increase in cumulative rainfall at high elevation. For concurrent rain events, the orographic enhancement effect is on the order of 60%. Evidence of a seasonal signature in the drop size distribution (DSD) was found with significantly heavier tails (larger raindrops) for summer DSDs at higher elevations, whereas no significant differences were observed between ridge and valley locations during fall deployment. However, physically-based modeling experiments suggest that there are inconsistencies between the reflectivity profiles and MRR DSD estimates when large raindrop sizes are present. The number of very small drops is very high (up to two orders of magnitude) at high elevations as compared to the typical values in the literature, which cannot be explained only by fog and drizzle and suggest an important role for mixed phase processes in determining the shape of the DSD below the brightband. Because numerical modeling experiments show that coalescence is the dominant microphysical mechanism for DSD evolution for the relatively low to moderate observed rain rates characteristic of mountainous regions, it is therefore critical to clarify the shape and parameters that characterize the left-hand side of the DSD in mountainous regions. Finally, whereas low cost Micro Rain Radars (MRR) were found particularly useful for qualitative description of precipitation events and to identify rain/snow melting conditions, when compared against collocated rain gauges, MRR Quantitative Precipitation Estimation (QPE) is not reliable. Place-based calibration and reliance upon physically-based QPE retrieval algorithms can improve their utility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.