Abstract

Abstract Strain gauges are useful sensors in many engineering and medical applications. When using one gauge for the measurement in quarter-bridge configurations, the elctrical current flowing delivers power to the electrical strain gauge which causes a temperature rise (transient heat effect or THE), with a strain signal appearing as drift of the zero baseline. Fibre optic sensors on the other side are used to measure temperature as well as strain or force. The aim of this study is to evaluate the rise in temperature produced by the electrical strain gauge and to determine the equivalent apparent strain accordingly as a step towards using the reading to correct for the error due to the THE. The results of this study show that the optical fibre sensor is more sensitive compared to the semiconductor sensor used as a reference temperature sensor. The results also show the feasibility of determining the equivalent apparent strain values through reverse calculation of number of fringes resulting from the fibre optic sensor due to the temperature change. This was as an initial step to implement those values in the measuring electronic circuitry in order to eliminate the drift in the zero baselines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.