Abstract
Complimenting our earlier work on generalizations of popular concordance measures in the sense of Scarsini for a pair of continuous random variables (X, Y) (such measures can be understood as functions of the bivariate copula C associated with (X, Y)), we focus on generalizations of Kendall’s τ. In Part I, we give two forms of such measures and also provide general bounds for their values, which are sharp in certain cases and depend on the values of Spearman’s ρ and the original Kendall’s τ. Part II is devoted to the intrinsic meaning of presented Kendall’s τ generalizations, their degree as polynomial-type concordance measures, and computational aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.