Abstract
A multi-channel passive ferromagnetic particle inductive sensor is proposed, which is mainly composed of a honeycomb permanent magnet and a set of coils. The honeycomb magnet generates the same high gradient static magnetic field in each channel (a total of 7 channels, 6 surrounding and 1 center), which helps improve the sensor’s throughput while maintain high precision. An induced voltage model that includes most of the structural design parameters is proposed, which provides theoretical support for sensor optimization. The correctness of this model is verified by finite element simulation and experiments. The experimental results show that the detection performance of each channel is almost the same, which is expected to be further improved by setting a reference channel. Moreover, the sensor can detect 70 μm iron particles in a single channel of diameter 4 mm. The proposed sensor can reduce the influence of magnetic field radial uniformity on the induced signals, improve the detection precision, and achieve high throughput (about a 14-fold increase in throughput compared to our previous work). Its high precision and high throughput favor lots of lube oil detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.