Abstract

Large amounts of machine learning methods with condensed names bring great challenges for researchers to select a suitable approach for a target dataset in the area of academic research. Although the graph neural networks based on the knowledge graph have been proven helpful in recommending a machine learning method for a given dataset, the issues of inadequate entity representation and over-smoothing of embeddings still need to be addressed. This article proposes a recommendation framework that integrates the feature-enhanced graph neural network and an anti-smoothing aggregation network. In the proposed framework, in addition to utilizing the textual description information of the target entities, each node is enhanced through its neighborhood information before participating in the higher-order propagation process. In addition, an anti-smoothing aggregation network is designed to reduce the influence of central nodes in each information aggregation by an exponential decay function. Extensive experiments on the public dataset demonstrate that the proposed approach exhibits substantial advantages over the strong baselines in recommendation tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.