Abstract

Metal oxide semiconductor (MOS) technology has reached its maximum profitable limits due to increase in leakage current, static power dissipation, limited switching frequency. One of the better solutions to overcome these problems is the quantum-dot cellular automata (QCA) technology, it boasts the absence of physical transportation charges, relying solely on Coulombic force for interaction between the cells also it is a transistor less technology does not require any external voltage bias. In the current integrated circuits, the data being transferred more than ever, the error correction and coding techniques find significance in reliable data communication. Recognizing the increasing importance of error correction in data communication, particularly with the widespread data transfer, this research specifically focuses on the implementation of an enhanced convolutional encoder using QCA for error correction in data transmission. Comparative study with the state-of-art is also carried out to examine performance of proposed design. As a result of our study, we were able to reduce the cell count by 33.34% and power dissipation is reduced by 77% with the proposed 1/2 rate encoder and the proposed 1/3 rate encoder has 15.9% less cell count and power dissipation is reduced by 72% as compared to existing design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call