Abstract

The series-resonant dc–dc converter (SRC) is widely used as power supply for telecommunications, wireless power transfer for electrical vehicle, and high-voltage power supplies. Recently, it became very popular in solid-state transformer application, where fault tolerance is a highly desired feature and it is obtained through redundancy. This letter proposes a reconfiguration scheme for the SRC for the case of failure in one semiconductor, which could drastically reduce the need of redundancy. Using the proposed scheme, the full-bridge based SRC can be reconfigured in a half-bridge topology, in order to keep the converter operational even with the failure [open circuit (OC) or short circuit (SC)] of one switch. As a drawback of this technique, the output voltage drops to half of its original value. Therefore, a novel reconfigurable rectifier based on the voltage-doubler topology is proposed as a solution to keep the output voltage constant after the fault. To verify the feasibility of the proposed scheme, the converter is tested experimentally in a 700–600 V prototype with 10 kW of output power. An insulated gate bipolar transistor (IGBT) SC fault is tested and the results confirm the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.