Abstract
Autonomous underwater vehicles (AUVs) are an important equipment for ocean investigation. Actuator fault diagnosis is essential to ensure the sailing safety of AUVs. However, the lack of failure data for training due to unknown ocean environments and unpredictable failure occurrences is challenging for fault diagnosis. In this paper, a meta-self-attention multi-scale convolution neural network (MSAMS–CNN) is proposed for the actuator fault diagnosis of AUVs. Specifically, a two-dimensional spectrogram of the vibration signals obtained by a vibration sensor is used as the neural network’s inputs. The diagnostic model is fitted by executing a subtask-based gradient optimization procedure to generate more general degradation knowledge. A self-attentive multi-scale feature extraction approach is used to utilize both global and local features for learning important parameters autonomously. In addition, a meta-learning method is utilized to train the diagnostic model without a large amount of labeled data, which enhances the generalization ability and allows for cross-task training. Experimental studies with real AUV data collected by vibration sensors are conducted to validate the effectiveness of the MSAMS–CNN. The results show that the proposed method can diagnose the rudder and thruster faults of AUVs in the cases of few-shot diagnosis.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have