Abstract

This paper presents a model to predict the crack formation fatigue lives of spur gear contacts operating under mixed lubrication conditions where surface roughnesses introduce intermittent metal-to-metal contacts and severe stress concentrations. The proposed model consists of several submodels including (i) a gear load distribution model to determine the normal tooth force distribution along the tooth profile, incorporating any profile modifications and manufacturing deviations, (ii) a mixed elastohydrodynamic lubrication model customized to handle transient contact conditions of gears, (iii) a stress formulation that assumes the plane strain condition to compute the transient elastic stress fields on and below the tooth surface induced by the mixed lubrication surface pressure and shear stress distributions, and (iv) a multi-axial fatigue model to predict the crack nucleation life distribution. The proposed spur gear fatigue model is used to simulate the contacts of gear pairs having different surface roughness amplitudes. The predictions are compared to the measured gear fatigue Stress-Life data for each surface condition to assess the model accuracy in predicting the crack nucleation fatigue lives as well as the location of the critical failure sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.