Abstract

Cutting plane algorithm (CPA) is a generalization of iterative first-order gradient method, in which the objective function is approximated successively by supporting hyperplanes. CPA has been tailored to solve regularized loss minimization in machine learning by exploiting the regularization structure. In particular, for linear Support Vector Machine (SVM) embedding a line search procedure effectively remedies the fluctuations of function value and speeds up the convergence in practical issue. However, the existing line search strategy based on sorting algorithm takes O(mlog m) time. In this paper, we propose a more effective line search solver which spends only linear time. It can be extended to multiclass SVM in which an optimized explicit piecewise linear function finding algorithm is prearranged. The total SVM training time is proved to reduce theoretically and experiments consistently confirm the effectiveness of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.