Abstract

Support vector machines (SVMs) are invaluable tools for many practical applications in artificial intelligence, e.g., classification and event recognition. However, popular SVM solvers are not sufficiently efficient for applications with a great deal of samples as well as a large number of features. In this paper, thus, we present NESVM, a fast gradient SVM solver that can optimize various SVM models, e.g., classical SVM, linear programming SVM and least square SVM. Compared against SVM-Perf (whose convergence rate in solving the dual SVM is upper bounded by O(1/√k) where k is the number of iterations) and Pegasos (online SVM that converges at rate O(1/k) for the primal SVM), NESVM achieves the optimal convergence rate at O(1/k <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) and a linear time complexity. In particular, NESVM smoothes the nondifferentiable hinge loss and ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -norm in the primal SVM. Then the optimal gradient method without any line search is adopted to solve the optimization. In each iteration round, the current gradient and historical gradients are combined to determine the descent direction, while the Lipschitz constant determines the step size. Only two matrix-vector multiplications are required in each iteration round. Therefore, NESVM is more efficient than existing SVM solvers. In addition, NESVM is available for both linear and nonlinear kernels. We also propose "homotopy NESVM" to accelerate NESVM by dynamically decreasing the smooth parameter and using the continuation method. Our experiments on census income categorization, indoor/outdoor scene classification event recognition and scene recognition suggest the efficiency and the effectiveness of NESVM. The MATLAB code of NESVM will be available on our website for further assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.