Abstract

The temperature has a significant effect on the lifespan and the safety of the batteries which are one of the core components of electric vehicles. A well-designed battery thermal management system is required to adjust the temperature of the batteries within an appropriate range for thermal safety, and further minimize the energy consumption for energy savings. However, these two goals form a tradeoff. Typically, increased energy consumption for cooling results in safer batteries thermally. To examine this tradeoff, firstly, a linear electro-thermal model is built to evaluate the thermal dynamics of the operating battery-cooling module. The linear model accounts for the heat generation based on internal resistance, and the heat transfer based on a resistance–capacitance model. Such linear model reduces the computation of the model simulation to dynamically catch up with the change of temperatures and to implement control strategies on the cooling system in a short time. Based on this model, a model predictive control (MPC) framework is proposed to design thermal control methods, which considers both thermal safety and energy saving. The weight of these two goals can be adjusted to explore the tradeoff between them. Finally, we investigate the performance of the MPC framework by applying the Urban Dynamometer Driving Schedule (UDDS) to the battery module. The simulation results show that the electro-thermal model is effective for battery thermal dynamics evaluation. Additionally, the tradeoff between the two goals is demonstrated by the simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call