Abstract

This paper proposes a novel fast terminal sliding mode (FTSM) control scheme, which accelerates convergence of the controlled system both in its approaching and after reaching the sliding manifold. The novelty lies in the design of time-varying sliding surface without a priori knowledge of the initial system states, so achieving insensitivity to the uncertainty of the initial states. Based on this, we design a corresponding FTSM control strategy, where the singularity problem of conventional terminal sliding mode (TSM) control systems is overcome by restricting the TSM surfaces to non-singular areas. We prove stability and finite-time convergence of the system with the proposed controller. Furthermore, we extend the proposed FTSM control scheme to high-order systems and discuss its application in practical systems. Preliminary simulation results and comparative studies demonstrate the validity of the proposed FTSM control scheme with the designed sliding surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.