Abstract

Investigating the stability of the synchronization manifold is a critical topic in the field of complex dynamical networks. Master stability function (MSF) is known as a powerful and efficient tool for the study of synchronization in complex identical networks. The network can be synchronized whenever the MSF is negative. MSF uses the Lyapunov or Floquet exponent theory to determine the stability of the synchronization state. Both of these methods need extensive numerical simulation and a long computational time. In this paper, a new approach to calculate MSF is proposed. The accuracy of the results and time of simulations are tested on seven different known oscillators and also compared with the conventional methods of MSF. The results show that the proposed technique is faster and more efficient than the existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.