Abstract
Survival models have found wider and wider applications in credit scoring recently due to their ability to estimate the dynamics of risk over time. In this research, we propose a Buckley-James safe sample screening support vector regression (BJS4VR) algorithm to model large-scale survival data by combing the Buckley-James transformation and support vector regression. Different from previous support vector regression survival models, censored samples here are imputed using a censoring unbiased Buckley-James estimator. Safe sample screening is then applied to discard samples that guaranteed to be non-active at the final optimal solution from the original data to improve efficiency. Experimental results on the large-scale real lending club loan data have shown that the proposed BJS4VR model outperforms existing popular survival models such as RSFM, CoxRidge and CoxBoost in terms of both prediction accuracy and time efficiency. Important variables highly correlated with credit risk are also identified with the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.