Abstract

Reliable modeling of the scattering by acoustically large and geometrically complex objects can be achieved by means of subdomain-dependent problem formulation and a numerically rigorous solution. While the objects’ inhomogeneity has driven the development of differential equation formulations and solvers, integral equation formulations, where the object’s background is modeled via a Green’s function, are advantageous for unbounded domains. In the hybrid integral equations approach (Usner et al., 2006), the interaction of separate subdomains with external fields is described by pertinent integral equations. Their Galerkin discretization leads to a dense blocked stiffness matrix. The development of compressed representations of the matrix, which are necessary for the treatment of large systems, becomes non-trivial due to the multitude of integral equation kernels and the different geometrical and physical characteristic of the subdomains. As part of the development of a fast hybrid integral equation solver framework, we consider the case of objects composed of large inhomogeneous volumes, modeled as incompressible fluids, and of simplified solids, modeled via surface integral equations. A hybrid integral equation formulation is derived and solved numerically. The iterative solution is accelerated by employing the butterfly-compressed hierarchical representation of the stiffness matrix, recently used for acoustic volume integral equations (Kaplan, 2022).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call