Abstract

Cellulose-based electroactive actuators are promising candidates for biomimetic robots and biomedical applications due to their lightweight, high mechanical strength, and natural abundance. However, cellulose-based electroactive actuators exhibit lower actuation performance than traditional conductive polymer actuators. This work reports a fast-response cellulose-based electroactive actuator based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized nanocellulose (TOCNF) film with layered structure fabricated by evaporation, and gold electrodes prepared by ion sputtering. The residual ions during the TEMPO oxidation process and the layered structure due to self-assembly accelerate the ion migration efficiency in actuators. The proposed actuator can reach a tip displacement of 32.1 mm at a voltage of 10 V and deflect 60° in 5 s. After applying a reverse 10 V voltage, the actuator can also be quickly deflected (42.5 mm). In addition, the actuator also shows high electrical actuation performance at low voltage (5 V). The excellent electroactive performance of as-prepared TOCNF/Au enables the feasibility to be applied to actuators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call