Abstract

The development of biomineralized hydrogels with excellent cytocompatibility is of great importance for tissue engineering applications. Here, porous polyvinyl alcohol/alginate/biphasic calcium phosphate (BPS) hydrogels were fabricated via chemical and physical crosslinking methods, and the BPS hydrogels were in vitro biomineralized using urease in saturated calcium-phosphorus solution. For comparison, the BPS hydrogels were also treated using simulated body fluid (SBF) and Dulbecco’s modified Eagle’s medium with fetal bovine serum (DMEM-FBS), respectively. The physicochemical characterizations confirmed that bone-like apatite was quickly formed on the urease-biomineralized BPS hydrogels compared to the SBF and DMEM-FBS treated hydrogels. Additionally, the bone marrow derived mesenchymal stem cells (BMSCs), adhered and proliferated on the biomineralized hydrogels, were systematically analyzed using cell counting kit-8 (CCK-8). This paper demonstrated the potential urease for fast in vitro biomineralization on hydrogels to improve the cytocompatibility for bone tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call