Abstract
Relying on the idea of importance sampling for substantiating the Bayesian filtering recursion, particle filters may become prohibitively inefficient even for moderate state dimensions and likewise whenever the signal to noise ratio is relatively high, as is the case with nearly deterministic state dynamics or random parameters. Markov chain Monte Carlo particle filters completely avoid importance sampling and by that circumvent many of the deficiencies associated with conventional particle filters. These methods may nevertheless suffer from slow convergence rate once inadequate or computationally intractable proposal distributions are used for generating new candidate samples in the underlying Markov chain. In this work, we devise a new Markov chain Monte Carlo particle filter whose sampling mechanism employs jumping Gaussian distributions. This technique enhances the underlying sampling efficiency and leads to significant reduction in the computational cost. The newly derived filter is shown to outperform the conventional (regularised) particle filter both in terms of accuracy and computational overhead, particularly when applied to estimation in systems with low intensity noise or of relatively high state dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.