Abstract

The H.264 standard achieves much higher coding efficiency than the MPEG-2 standard, due to its improved inter-and intra-prediction modes at the expense of higher computational complexity. Transcoding MPEG-2 video to H.264 is important to enable gradual migration to H.264. However, given the significant differences between the MPEG-2 and the H.264 coding algorithms, transcoding is a much more complex task and new approaches to transcoding are necessary. The main problems that need to be addressed in the design of an efficient heterogeneous MPEG-2/H.264 transcoder are: the inter-frame prediction, the transform coding and the intra-frame prediction. In this paper, we focus our attention on the inter-frame prediction, the most computationally intensive task involved in the transcoding process. This paper presents a novel macroblock (MB) mode decision algorithm for P-frame prediction based on machine learning techniques to be used as part of a very low complexity MPEG-2 to H.264 video transcoder. Since coding mode decisions take up the most resources in video transcoding, a fast MB mode estimation would lead to reduced complexity. The proposed approach is based on the hypothesis that MB coding mode decisions in H.264 video have a correlation with the distribution of the motion compensated residual in MPEG-2 video. We use machine learning tools to exploit the correlation and construct decision trees to classify the incoming MPEG-2 MBs into one of the several coding modes in H.264. The proposed approach reduces the H.264 MB mode computation process into a decision tree lookup with very low complexity. Experimental results show that the proposed approach reduces the MB mode selection complexity by as much as 95% while maintaining the coding efficiency. Finally, we conduct a comparative study with some of the most prominent fast inter-prediction methods for H.264 presented in the literature. Our results show that the proposed approach achieves the best results for video transcoding applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call