Abstract
In order to solve the problems of low matching accuracy, slow speed and high system overhead in image matching methods, a rotation binary descriptor construction method based on Speed Up Robust Features (SURF) feature point detection is designed by using different Fast Library for Approximate Nearest Neighbors (FLANN) parameters and the filtering mechanism to screen out wrong matches according to the types of feature descriptors constructed in different feature extraction algorithms. This method ensures scale and rotation invariant while simplifying the representation of feature descriptors and speeding up the calculation speed in the initial stage of matching by combining the binary characteristics of descriptors. Finally, the Hamming distance is used as the filtering mechanism to improve the success rate of the final matching. The experimental results show that the accuracy of image matching is improved by 1.5% and the matching time is improved by 0.116s, while the robustness of the image to noise and rotation is ensured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.