Abstract

We have designed a silicon detector to measure the angular distribution and the multiplicity of charged secondaries produced in high-energy PbPb interactions. It will be used to characterize the events in the NA50 experiment. The experiment will have to function at very high rate, and the silicon detectors will have to operate in the high-radiation area close to the target.Therefore, the detector will have to be very fast (dead time below 50 ns), radiation resistant (up to the Mrad level as dose and up to more than 1013 particles/cm2 as non-ionizing damage) and of high granularity. The conditions on noise, speed and radiation hardness are comparable to the ones foreseen at the future Large Hadron Collider at CERN.We present here the detector design, discuss some of the solutions which have been investigated and report first results on the components of the system which have been designed and produced up to now.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.