Abstract

An innovative approach in its different implementations for the synthesis of compromise sum and difference patterns of monopulse planar arrays is presented. The synthesis method is based on a sub-arraying technique aimed at generating the compromise patterns through an optimal excitation matching procedure. By exploiting some properties of the solution space, the synthesis problem is reformulated as a combinatorial one to allow a considerable saving of computational resources. Thanks to a graph-based representation of the solution space, the use of an efficient path-searching algorithm is enabled to speed up the convergence to the compromise solution. In the numerical validation, a set of representative examples concerned with both pattern matching problems and pattern-feature optimization are reported in order to assess the effectiveness and flexibility of the proposed approach. Comparisons with previously published results and solutions obtained by a hybrid version of the approach customized to deal with the optimization of the sidelobe level (SLL) are reported and discussed, as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call