Abstract

For the anti-interference/denoise purpose, it usually requires minimizing the sidelobe level (SLL) of a wide-beam pattern with a desired low nulling level (NL) in the nulling region. To realize such an objective, the shaped-beam pattern synthesis (SBPS) is the most commonly used approach. However, since the SBPS problem focuses on synthesizing a predetermined beam shape, the minimum SLL via this approach cannot ensure to obtain the maximum power gain. Conversely, it cannot obtain the lowest SLL with a certain power gain requirement. Based on such consideration, this paper tries to further minimize SLL of a wide-beam pattern with a desired low NL nulling region, by solving the power gain pattern synthesis (PGPS) problem. The PGPS problem selects the array excitation by directly optimizing the power gain. Hence, it has the potential to reduce SLL, when achieving the equal mainlobe power gain constraint via SBPS. An iterative algorithm which converts the primal optimization problem into convex sub-problems is proposed, resulting in an effective problem-solving scheme. Numerical simulations demonstrate the proposed algorithm can obtain about 10-dB lower SLL than the existing algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call