Abstract

X-ray in-line phase contrast tomography holds great promise for the quantitative analysis of soft materials. However, its applications have been limited, so far, by the fact that direct methods based on the transport-of-intensity equation and the contrast transfer function are sensitive to noise and applicable only to limited types of samples. Here, we propose an iterative method based on the Gerchberg-Saxton algorithm (R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972)), but overcoming its slow convergence by an acceleration technique, named random signed feedback, which shows an excellent performance, both in numerical simulation and tomographic experiment, of discriminating various polymers even when using 53 keV synchrotron X-rays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.