Abstract

The sensitivity reanalysis technique is an important tool for selecting the search direction in structural optimization design. Based on the decomposition perturbation of the flexibility matrix, a fast and exact structural displacement sensitivity reanalysis method is proposed in this work. For this purpose, the direct formulas for computing the first-order and second-order sensitivities of structural displacements are derived. The algorithm can be applied to a variety of the modifications in optimal design, including the low-rank modifications, high-rank modifications, small modifications and large modifications. Two numerical examples are given to verify the effectiveness of the proposed approach. The results show that the presented algorithm is exact and effective. Compared with the existing two reanalysis methods, this method has obvious advantages in calculation accuracy and efficiency. This new algorithm is very useful for calculating displacement sensitivity in engineering problems such as structure optimization, model correction and defect detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call