Abstract

PurposeOn-orbit assembly technology is a promising research topic in spaceflight field. For purposes of studying the dynamic performance and reducing weight of an on-orbit assembly satellite structure frame, this paper aims to propose a structural optimization design method based on natural frequency.Design/methodology/approachThe dynamic stability of the satellite under working condition depends on the mechanical properties of the structure matrix. A global structural optimization model is established, with the objective of mass minimization and the constraints of given natural frequencies and given structure requirements. The structural optimization and improvement design method is proposed using sequential quadratic programming calculation.FindingsThe optimal result of objective function is effectively obtained, and the best combination of structural geometric parameters is configurated. By analyzing the relationship between the structural variables and optimization parameters, the primary and secondary factors to the mass optimization process of the microsatellite satisfying the dynamic performance requirements are obtained, which improves the effectiveness and accuracy of the system optimization design.Originality/valueThis method can coordinate the relation between satellite vibration stability and weight reduction, which provides an effective way for the optimization design of on-orbit assembly microsatellite. It has reference significance for the similar spacecraft framework structure design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call