Abstract

A new truly-mixed finite element for the analysis of viscoelastic beams is presented that is based on the additive decomposition of the bending moment in a viscoelastic and a purely elastic contribution. Bending moments are the primary variables that belong to H2(0,ℓ) whereas the kinematic variables (that are the velocities and not the displacements as usual) are globally discontinuous and elementwise linear. As for the peculiarities of the proposed finite element, results from relaxation and creep numerical tests are presented in much detail and a quadratic convergence assessed for all the variables involved. In the second part of the paper, a fast approach to structural (sizing) optimization, set as a topology optimization problem, of such viscoelastic beams is presented in the presence of time-dependent objective functions. Within a gradient-based minimization scheme that is solved via the method of moving asymptotes (Svanberg, 1987), a dual sensitivity analysis approach is derived and representative numerical results presented and discussed in much detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.