Abstract

We address the problem of optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs). The inverse problem seeks to infer an infinite-dimensional parameter from experimental data observed at a set of sensor locations and from the governing PDEs. The goal of the OED problem is to find an optimal placement of sensors so as to minimize the uncertainty in the inferred parameter field. Specifically, we seek an optimal subset of sensors from among a fixed set of candidate sensor locations. We formulate the OED objective function by generalizing the classical A-optimal experimental design criterion using the expected value of the trace of the posterior covariance. This expected value is computed through sample averaging over the set of likely experimental data. To cope with the infinite-dimensional character of the parameter field, we construct a Gaussian approximation to the posterior at the maximum a posteriori probability (MAP) point, and use the...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call