Abstract

We present a fast algorithm to solve nesting problems based on a semi-discrete representation of both the 2D non-convex pieces and the strip. The pieces and the strip are represented by a set of equidistant vertical line segments. The discretization algorithm uses a sweep-line method and applies minimal extensions to the line segments of a piece to ensure that non-overlapping placement of the segments, representing two pieces, cannot cause overlap of the original pieces. We implemented a bottom-left-fill greedy placement procedure, using an optimised ordering of the segments overlap tests. The C++ implementation of our algorithm uses appropriate data structures that allow fast execution. It executes the bottom-left-fill algorithm for typical ESICUP data sets in a few milliseconds, even when rotation of the pieces is considered, and thus provides a suitable ‘building block’ for integration in metaheuristics. Moreover, we show that the algorithm scales well when the number of pieces increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call