Abstract
Abstract The root-finding problem of a univariate nonlinear equation is a fundamental and long-studied problem, and has wide applications in mathematics and engineering computation. This paper presents a fast and robust method for computing the simple root of a nonlinear equation within an interval. It turns the root-finding problem of a nonlinear equation into the solution of a set of linear equations, and explicit formulae are also provided to obtain the solution in a progressive manner. The method avoids the computation of derivatives, and achieves the convergence order 2 n − 1 by using n evaluations of the function, which is optimal according to Kung and Traub’s conjecture. Comparing with the prevailing Newton’s methods, it can ensure the convergence to the simple root within the given interval. Numerical examples show that the performance of the derived method is better than those of the prevailing methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have