Abstract

We present a novel parallelized formulation for fast non-linear image registration. By carefully analyzing the mathematical structure of the intensity independent Normalized Gradient Fields distance measure, we obtain a scalable, parallel algorithm that combines fast registration and high accuracy to an attractive package. Based on an initial formulation as an optimization problem, we derive a per pixel parallel formulation that drastically reduces computational overhead. The method was evaluated on ten publicly available 4DCT lung datasets, achieving an average registration error of only 0.94 mm at a runtime of about 20 s. By omitting the finest level, we obtain a speedup to 6.56 s with a moderate increase of registration error to 1.00 mm. In addition our algorithm shows excellent scalability on a multi-core system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.