Abstract

This paper presents an efficient feature-based approach to initialize non-linear image registration. Today, nonlinear image registration is dominated by methods relying on intensity-based similarity measures. A good estimate of the initial transformation is essential, both for traditional iterative algorithms and for recent one-shot deep learning (DL)-based alternatives. The established approach to estimate this starting point is to perform affine registration, but this may be insufficient due to its parsimonious, global, and non-bending nature. We propose an improved initialization method that takes advantage of recent advances in DL-based segmentation techniques able to instantly estimate fine-grained regional delineations with state-of-the-art accuracies. Those segmentations are used to produce local, anatomically grounded, feature-based affine matchings using iteration-free closed-form expressions. Estimated local affine transformations are then fused, with the log-Euclidean polyaffine framework, into an overall dense diffeomorphic transformation. We show that, compared to its affine counterpart, the proposed initialization leads to significantly better alignment for both traditional and DL-based non-linear registration algorithms. The proposed approach is also more robust and significantly faster than commonly used affine registration algorithms such as FSL FLIRT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call