Abstract

Quadrature by Expansion (QBX) is a quadrature method for approximating the value of the singular integrals encountered in the evaluation of layer potentials. It exploits the smoothness of the layer potential by forming locally-valid expansions which are then evaluated to compute the near or on-surface value of the potential. Recent work towards coupling of a Fast Multipole Method (FMM) to QBX yielded a first step towards the rapid evaluation of such integrals (and the solution of related integral equations), albeit with only empirically understood error behavior. In this paper, we improve upon this approach with a modified algorithm for which we give a comprehensive analysis of error and cost in the case of the Laplace equation in two dimensions. For the same levels of (user-specified) accuracy, the new algorithm empirically has cost-per-accuracy comparable to prior approaches. We provide experimental results to demonstrate scalability and numerical accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.