Abstract
In the last couple decades, more use of nitrogenous chemical fertilizers and improper disposable of wastewater has harmed water and it cause water pollution. Low concentrated Nitrite (NO2) is the one of hazardous pollution and it is difficult to remove through biological processes, while it occurs in low concentration. Many technologies have been developed to accumulate NO2 in the mainstream. However, most of them use chemical inhibitors for nitrite oxidizing bacteria (NOB). In past studies high concentrated reactor performance have been modeled using mathematical models. In this study, machine learning application (MLA) was applied to model the performance of reactors. The reactor was low concentrated, continuous stirred tank reactor (CSTR) with in-fluent total ammonia nitrogen (TAN) concentration was (∼30PPM-TAN and ∼50PPM-TAN) and lower output TAN concentration was (∼1PPM-TAN). However, 216 days of water treatment data from CSTR were used, and the CSTR’s efficiency (%) of nitrite accumulation was estimated using in-fluent and effluent quantities. Then efficiency is predicted with 70 % of the data that is used to train the algorithms. Confusion matrix was used to access the performance of algorithms and actual and predicted classes (efficiencies) were compared. The DTC and XGB over-performed other algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.