Abstract

We consider Tikhonov regularization of linear ill-posed problems with noisy data. The choice of the regularization parameter by classical rules, such as discrepancy principle, needs exact noise level information: these rules fail in the case of an underestimated noise level and give large error of the regularized solution in the case of very moderate overestimation of the noise level. We propose a general family of parameter choice rules, which includes many known rules and guarantees convergence of approximations. Quasi-optimality is proved for a sub-family of rules. Many rules from this family work well also in the case of many times under- or overestimated noise level. In the case of exact or overestimated noise level we propose to take the regularization parameter as the minimum of parameters from the post-estimated monotone error rule and a certain new rule from the proposed family. The advantages of the new rules are demonstrated in extensive numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.