Abstract

Parallel manipulators feature relatively high payload and accuracy capabilities compared to their serial counterparts. However, they suffer from small workspace and low maneuverability. Kinematic redundancy for parallel manipulators can improve both of these characteristics. This paper presents a family of new kinematically redundant planar parallel manipulators with six actuated-joint degrees of freedom based on a 3-PṞRR architecture obtained by adding an active prismatic joint at the base of each limb of the 3-ṞRR manipulator. First, the inverse displacement of the manipulators is explained, then their reachable and dexterous workspaces are obtained. Comparing the proposed redundant manipulators to the original 3-ṞRR nonredundant manipulator, both reachable and dexterous workspaces are substantially larger. Next, the Jacobian matrices of the manipulators are derived, and different types of singularities are analyzed and demonstrated. It is shown that the vast majority of singularities can be avoided by using kinematic redundancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.