Abstract
In this paper a family of fully implicit Milstein methods are introduced for solving stiff stochastic differential equations (SDEs). It is proved that the methods are convergent with strong order 1.0 for a class of SDEs. For a linear scalar test equation with multiplicative noise terms, mean-square and almost sure asymptotic stability of the methods are also investigated. We combine analytical and numerical techniques to get insights into the stability properties. The fully implicit methods are shown to be superior to those of the corresponding semi-implicit methods in term of stability property. Finally, numerical results are reported to illustrate the convergence and stability results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.