Abstract

Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-square stable) stiff stochastic differential equations. Standard explicit methods, as for example the Euler-Maruyama method, face severe stepsize restriction when applied to stiff problems. Fully implicit methods are usually not appropriate for stochastic problems and semi-implicit methods (implicit in the deterministic part) involve the solution of possibly large linear systems at each time-step. In this paper, we present a recent generalization of explicit stabilized methods, known as Chebyshev methods, to stochastic problems. These methods have much better (mean-square) stability properties than standard explicit methods. We discuss the construction of this new class of methods and illustrate their performance on various problems involving stochastic ordinary and partial differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.