Abstract
Fake profile identification on social media platforms is essential for preserving a reliable online community. Previous studies have primarily used conventional classifiers for fake account identification on social networking sites, neglecting feature selection and class balancing to enhance performance. This study introduces a novel multistage stacked ensemble classification model to enhance fake profile detection accuracy, especially in imbalanced datasets. The model comprises three phases: feature selection, base learning, and meta-learning for classification. The novelty of the work lies in utilizing chi-squared feature-class association-based feature selection, combining stacked ensemble and cost-sensitive learning. The research findings indicate that the proposed model significantly enhances fake profile detection efficiency. Employing cost-sensitive learning enhances accuracy on the Facebook, Instagram, and Twitter spam datasets with 95%, 98.20%, and 81% precision, outperforming conventional and advanced classifiers. It is demonstrated that the proposed model has the potential to enhance the security and reliability of online social networks, compared with existing models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of Engineering and Technology Innovation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.