Abstract
With the rapid advancement of wireless network technologies and the rapid increase in the number of mobile devices, mobile users (MUs) have an increasing high demand to access the Internet with guaranteed quality-of-service (QoS). Data and energy integrated communication networks (DEINs) are emerging as a new type of wireless networks that have the potential to simultaneously transfer wireless energy and information via the same base station (BS). This means that a physical BS is virtualized into two parts: one is transferring energy and the other is transferring information. The former is called virtual energy base station (eBS) and the latter is named as data base station (dBS). One important issue in such setting is dynamic resource allocation. Here the resource concerned includes both power and time. In this paper, we propose a fair data-and-energy resource allocation algorithm for DEINs by jointly designing the downlink energy beamforming and a power-and-time allocation scheme, with the consideration of finite capacity batteries at MUs and power sensitivity of radio frequency (RF) to direct current (DC) conversion circuits. Simulation results demonstrate that our proposed algorithm outperforms the existing algorithms in terms of fairness, beamforming design, sensitivity, and average throughput.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.