Abstract
The Multi-Access Edge Computing (MEC) constitutes computing over virtualized resources distributed at the edge of mobile network. For mobile users, an optimal allocation of communication and computing resources changes over time and space, and the resource allocation becomes a complex problem. Moreover, for delay constrained applications, the resource allocation to mobile users cannot be solved by approaches designed for static users, as a solution would not be obtained within a desired time. Thus, in this paper, we propose a low-complexity computing and communication resource allocation for offloading of real-time computing tasks generated with a high arrival rate by the mobile users. We exploit probabilistic modeling of the users’ movement to pre-allocate the computing resources at base stations and to select suitable communication paths between the users and the base station with the pre-allocated computing resources. The simulations show that the proposed algorithm keeps the offloading delay below 100 ms for the small tasks even with the arrival rate of five tasks per second per user, while the state-of-the-art algorithms can handle only up to 0.5 tasks per second per user. Thus, the proposal enables an exploitation of the MEC for various real-time applications even if the users are moving.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Network and Service Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.