Abstract

Reverse vesicles are spherical containers in organic liquids (oils) consisting of an oily core surrounded by a reverse bilayer. They are the organic counterparts to vesicles in aqueous solution and could potentially find analogous uses in encapsulation and controlled release. However, few examples of robust reverse vesicles have been reported, and general guidelines for their formation do not exist. We present a new route for forming stable unilamellar reverse vesicles in nonpolar organic liquids, such as cyclohexane and n-hexane. The recipe involves mixing short- and long-chain lipids (lecithins) with a trace of a salt such as sodium chloride. The ratio of short- to long-chain lecithin controls the type and size of self-assembled structure. As this ratio is increased, a spontaneous transition from reverse micelles to reverse vesicles occurs. Small-angle neutron scattering (SANS) and transmission electron microscopy (TEM) confirm the presence of unilamellar vesicles in the corresponding solutions. Average vesicle diameters can be tuned from 60 to 250 nm depending on the sample composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.