Abstract

We report a new route for forming reverse wormlike micelles (i.e., long, flexible micellar chains) in nonpolar organic liquids such as cyclohexane and n-decane. This route involves the addition of a bile salt (e.g., sodium deoxycholate) in trace amounts to solutions of the phospholipid lecithin. Previous recipes for reverse wormlike micelles have usually required the addition of water to induce reverse micellar growth; here, we show that bile salts, due to their unique "facially amphiphilic" structure, can play a role analogous to that of water and promote the longitudinal aggregation of lecithin molecules into reverse micellar chains. The formation of transient entangled networks of these reverse micelles transforms low-viscosity lecithin organosols into strongly viscoelastic fluids. The zero-shear viscosity increases by more than 5 orders of magnitude, and it is the molar ratio of bile salt to lecithin that controls the viscosity enhancement. The growth of reverse wormlike micelles is also confirmed by small-angle neutron scattering (SANS) experiments on these fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call