Abstract

Morphology is a crucial factor in determining the chemical, optical, and electrical properties of nanoscale materials. In this work, we utilized a facile room-temperature deposition method to synthesize three-dimensional (3D) coral-like Ag2S nanostructures. The formation mechanism of 3D coral-like Ag2S nanostructures was proposed by tracking the reaction process. In comparison with 0D Ag2S nanoparticles and 1D Ag2S nanowires of similar size, 3D coral-like Ag2S nanostructures exhibit higher pore volume, photocatalytic activity and cyclic stability for degradation of methyl orange (MO). Surface photovoltage measurement, electrochemical impedance spectroscopy, and Mott–Schottky analysis showed that compared to other Ag2S nanostructures, 3D coral-like Ag2S nanostructures have the strongest surface photovoltaic response, longest carrier lifetime, and highest carrier density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call