7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.ceramint.2022.01.207
Copy DOIJournal: Ceramics International | Publication Date: Jan 23, 2022 |
Citations: 27 | License type: other-oa |
Thin films of ZnO, Cu-doped ZnO, Cu2O and binary Cu2O/Cu-doped ZnO p-n heterojunction thin film were prepared and tested for their heterogeneous photocatalytic activity in the removal of three selected organic dyes: methylene blue (MB), methylene orange (MO) and Congo red (CR). The photocatalytic experiments were carried out under UV light and natural sunlight. The synthesis of the thin film photocatalysts was carried out by an electrochemical deposition method and the resulting films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), UV–Vis spectroscopy, electrochemical impedance spectroscopy and capacitance measurements (i.e., Mott-Schottky plots). Under UV illumination, the results showed that the photocatalytic degradation activity is of first-order kinetics and the lifetime of the photogenerated electron-hole pairs of ZnO is increased by the Cu doping. The combination of Cu-doped ZnO and Cu2O allows the construction of a p-n heterojunction that enhances the photocatalytic process, as demonstrated for the photocatalytic degradation of dyes under sunlight irradiation.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.