Abstract
Many laboratory experimental techniques used for investigating fine fluid structure, such as fiber spinning, microfluidic flow, and electrospinning, require high quality images with good contrast. Common processes of observation and image recording rely heavily on highly technical light and camera setups which can be difficult to operate in some processing conditions and expensive as well. Here, we report a facile technique using LED backlight imaging to investigate ultrathin fluid profile in two different processes, melt electrospinning and tubeless siphoning. The setup comprises of a simple LED light source facing toward the camera, directly shining into the camera lens. The object under investigation was placed between the camera and the light source. The high-quality captured images and video recordings enable the precise analysis of the cone diameter and jet solidification in case of melt electrospinning, and extensional behavior profiles for tubeless siphoning. The LED backlight setup with high resolution camera is a useful tool to investigate sub-micron scale dimensions in fiber spinning, microfluidic flow, solution electrospinning, contact angle measurement for surface properties analysis, etc.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have